ASCNet: Self-supervised Video Representation
Learning with Appearance-Speed Consistency
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Background

B Self-supervised video representation learning aims to learn video features from unlabeled video.

B The learned video representation can be use for downstream tasks, such as action recognition.
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Challenges

1. Videos contains unstructured and noisy visual information.
® Itis hard to learn all information with single task.
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2. Videos are unlabeled. - background, floor and

® |Itis hard to find sufficient supervision for model training.




Previous works

B Existing methods design pretext tasks to obtain supervision signal from the untrimmed video for
representation learning.
® Future prediction task;
® Temporal order sorting task;

® Playback speed prediction task;
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Limitations

Limitations of existing pretext tasks

1. Some of the approaches rely on pre-computed motion information (e.g., optical flow),
which is computationally heavy, particularly when the dataset is scaled up.

2. While negative samples play important roles in instance discrimination tasks, it is hard to
maintain their quality and quantity. Moreover, same-class negative samples can be

harmful to the representations used in downstream tasks.




Our method
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Learn robust video representation from consistency between positive samples

B Appearance Consistency Perception (ACP)
M Speed Consistency Perception (SCP)



Appearance Consistency Perception Task

B Appearance Consistency Perception (ACP) Task: minimize the representation distance

between two augmented clips from the same video.

Appearance Appearance
Projection Head  Predictor  _
| |
g_ g " ha A ACP Task
: [ [
:EMA 5 L — <MA
[ ¥ | 2
. . [ | Lq = ”ag_a]'”z
Video a 2% f(,f) 9da i> I
1

Motivation

M Different data augmentations or playback speeds do not change the content of the clip.




Speed Consistency Perception Task

B Speed Consistency Perception (SCP) Task: minimize the distance between two clips with

the same playback speed while the appearance can be different.
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B Temporal information is crucial for the downstream tasks;

B Changes of some motion may be not obvious under different playback speeds: we only

minimize distance between the same playback speed.
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B Experimental results:
® comparison to the state-of-the-art methods on action recognition;

® comparison to the state-of-the-art methods on video retrieval.

B Datasets:

® Kinetics-400: ~240K training videos, 400 human action classes;

® UCF-101: 13,320 videos, 101 realistic action categories;
® HMDB-51: 6,849 videos, 51 action classes.




Experimental results

B Comparison with SOTA on action recognition.

Table 2: Comparison with SOTA self-supervised learning
methods on the UCF-101 and HMDB-51 datasets.

Method Date | Dataset (duration) Backbone Frames Res. Single-Mod | UCE HMDB Table 3: Performance of different evaluation
Shuffle&Learn [25] 2016 | UCF (1d) CaffeNet - 224 v 50.2 18.1 protocols on UCF-101 dataset. The models
OPN [23] 2017 | UCF (1d) CaffeNet ; 224 7 563 22. tra .
CMC [30] 2019 | UCF (1d) CaffeNet : 224 L 59.1 267 are pre-trained on Kinetics-400.
MAS [33] 2019 | UCF (1d) C3D 16 112 X 588 326
VCP [24] 2020 | UCF (1d) C3D 16 112 ¥ 68.5 325 Arch. Res. #Frames CropType Top]
ClipOrder [39] 2019 | UCF (1d) R2+DD 16 112 v 724 309 224 64 Center-crop  90.77%
PRP [£0] 2020 | UCF (1d) R2+D 16 112 v/ 721 350  g3p.g 24 64 Three-crop  90.88%
PSP [V] 2020 | UCF (1d) R(2+1)D 16 112 ¥ 748 368 128 32 Ten-crop  87.31%
MAS [33] 2019 | K400 (28d) C3D 16 112 X 612 334 112 16 Center-crop  80.52%
3D-RotNet [19] 2018 | K400 (28d) 3D RIS 16 12 b 629 337 3ADRIS 112 16 Three-crop  80.73%
ST-Puzzle [21] 2019 | K400 (28d) 3D RIS 48 224 i 65.8  33.7 128 16 Three-crop ~ 80.99%
DPC [13] 2019 | K400 (28d) 3D RIS 64 128 7 682 345
CBT [29] 2019 | K600+ (273d) S3D-G - 112 7 79.5  44.6
SpeedNet [2] 2020 | K400 (28d) S3D-G 64 224 i 81.1 488
Pace [34] 2020 | K400 (28d) S3D-G 64 224 v 87.1 526 . :
CoCLR-RGB [15] 2020 | K400 (28d) S3D-G 32 128 X 87.9 546 Tat?lg 4: Performance of different pre-
RSPNet [5] 2021 | K400 (28d) S3D-G 64 224 oL 89.9  59.6 training epochs on UCF-101 dataset.

| Ours K400 (28d) 3D RIS 6 112 7 805 523 The model uses a pre-trained 3D
Ours K400 (28d) S3D-G 64 224 4 90.8  60.5 ResNet-18 as the backbone.
Fully Supervised [16] K400 (28d) 3D R18 16 112 v 84.4 56.4
Fully Supervised [38] ImageNet S3D-G 64 294 4 86.6  57.7 Epochs 100 200 300 400
Fully Supervised [38] K400 (28d) S3D-G 64 224 7 96.8  75.9 Top-1(%) 76.34 80.52 81.31 81.50
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Experimental results

B Comparison with SOTA on nearest neighbor video retrieval.
Table 5: Comparison with SOTA methods on the UCF-101 dataset.

: Top-£
Method Architecture =1 F =% k=10 k=90 E—=F0
OPN [23] CaffeNet 19.9 28.7 34.0 40.6 516

Buchler et al. [3] CaffeNet 25.7 36.2 42.2 49.2 395
ClipOrder [39] 3D RI18 14.1 30.3 40.0 511 66.5
SpeedNet [7] S3D-G 13.0 28.1 39 49.5 65.0
3D R18 18.6 2546 42.5 B15 8 68.1

04

YR R(2+1)D 19.9 33.7 420 50.5 64.4
\, 3D R13 238 38.1 464 56.6 69.8

Pace [34]
C3D 319 497 592 68.9 80.2
- C3D 36.0 567 665 76.3 87.7
ReobNon IDRIS 411 594 684 718 887

| Ours 3D R18 58.9 76.3 82.2 87.5 93.4 |

B Our ASCNet outperforms other methods on nearest neighbor video retrieval task.
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Conclusions

Contributions

B \We propose the ACP and SCP tasks for unsupervised video representation learning.
B \We propose the appearance-based feature retrieval strategy to select the more effective
positive sample for speed consistency perception.

B We verify the effectiveness of ACP and SCP tasks for learning meaningful video representations

on two downstream tasks and two datasets.




Thank you!
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