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Background Model Overview Our Methods

Self-supervised video representation learning aims to learn
video features from unlabeled videos. The learned model

=

Video Video

Algorithm 1 Training method of ASCNet.
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Experiments c Experiments c
e Videos are unlabeled. It is hard to find sufficient
supervision for model training.
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learning methods on the UCF-101 and HMDB-51 datasets. South China Um\.fersmy of Technology
Our ASCNet outperforms the ImageNet supervised pre- Table 2: Comparison with state-of-the art methods for sehuangdeng@mail.scut.edu.cn

We verifty the effectiveness of our method for learn-

ing meaningful video representations on two down-

stream tasks, namely, action recognition and re- _ .
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In all cases, we demonstrate state-of-the-art perfor-
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