

Dynamic Inference: A New Approach Toward Efficient Video Action Recognition

Action Recognition: classify the short clip or untrimmed video into pre-defined class.

Action Recognition: classify the short clip or untrimmed video into pre-defined class.

- More than simply recognizing objects
- Complex person-person interaction & people-object interactions
- Videos bring motions

The time to process one frame AND the number of processed frames.

The time to process one frame AND the number of processed frames.

Direction 1: Lightweight Base Model

- 1. 2D Conv + Efficient Temporal Modeling
- 2. Decompose 3D Conv
- 3. Network architecture search
- **4.** Others ...

The time to process one frame AND the number of processed frames.

Direction 1:Direction 2:Lightweight Base ModelAdaptive Frame Sampler

- 1. 2D Conv + Efficient Temporal Modeling
- 2. Decompose 3D Conv
- 3. Network architecture

search

4. Others ...

- Hand-crafted sampler: Uniform sampling, Dense sampling
- Adaptive frame sampler: Adaframe ^[1], MARL ^[2], SCSampler ^[3]

^[1] Zuxuan Wu, Caiming Xiong, Chih-Yao Ma, Richard Socher, and Larry S Davis. Adaframe: Adaptive frame selection for fast video recognition. In Proc. CVPR, 2019.

 ^[2] Wenhao Wu, Dongliang He, Xiao Tan, Shifeng Chen, and Shilei Wen. Multi-agent reinforcement learning based frame sampling for effective untrimmed video recognition. In *Proc. ICCV*, 2019.
[3] Bruno Korbar, Du Tran, and Lorenzo Torresani. Scsampler: Sampling salient clips from video for efficient action recognition. In *Proc. ICCV*, 2019.

The time to process one frame AND the number of processed frames.

Direction 1: Direction 2: Direction 3: Lightweight Base Model Adaptive Frame Sampler Dynamic Network Route 2D Conv + Efficient • Hand-crafted sampler: Image recognition: **Temporal Modeling** Uniform sampling, *MSDNet*^[4], *SkipNet*^[5]... **Dense sampling** Decompose 3D Conv Video recognition: 2. Adaptive frame sampler: We try to improve Network architecture 3. Adaframe^[1], MARL^[2], efficiency from dynamic search SCSampler^[3] inference viewpoint. Others ... *4*.

^[1] Zuxuan Wu, Caiming Xiong, Chih-Yao Ma, Richard Socher, and Larry S Davis. Adaframe: Adaptive frame selection for fast video recognition. In Proc. CVPR, 2019.

 ^[2] Wenhao Wu, Dongliang He, Xiao Tan, Shifeng Chen, and Shilei Wen. Multi-agent reinforcement learning based frame sampling for effective untrimmed video recognition. In *Proc. ICCV*, 2019.
[3] Bruno Korbar, Du Tran, and Lorenzo Torresani. Scsampler: Sampling salient clips from video for efficient action recognition. In *Proc. ICCV*, 2019.

^[4] Gao Huang and Danlu Chen. Multi-scale dense networks for resource efficient image classification. In Proc. ICLR, 2018.

^[5] Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and Joseph E Gonzalez. Skipnet: Learning dynamic routing in convolutional networks. In Proc. ECCV, 2018.

(a) Different "Writing" video instances

- (a) Different "Writing" video instances
 - Irregular viewpoint
- *Need varying network capability*

- (a) Different "Writing" video instances
 - Irregular viewpoint

Need varying network capability

(b) "Running" vs. "Long Jump"

- (a) Different "Writing" video instances
 - Irregular viewpoint
- *Need varying network capability*

(b) "Running" vs. "Long Jump"

Different from "Writing" *Need varying number of frames*

- (a) Different "Writing" video instances
 - Irregular viewpoint
- *Need varying network capability*

(b) "Running" vs. "Long Jump"Different from "Writing"*Need varying number of frames*

Videos differentiate from each other in terms of their distinguishability.

CVPR SEATTLE WASHINGTON JUNE 16-18 2020

(a) Depth-axis dynamic scheme

CVPR SEATTLE WASHINGTON JUNE 16-18 2020

(a) Depth-axis dynamic scheme

(b) Input-axis dynamic scheme

(b) Input-axis dynamic scheme

(c) Input with permutation

sum

(a) Depth-axis dynamic scheme

features

[1] Ji Lin, Chuang Gan, and Song Han. Tsm: Temporal shift module for efficient video understanding. In *Proc. ICCV*, 2019.

Experiment

Scene-related Datasets

- Kinetics-400
 - 306,245 videos, 400 activity classes
- > UCF-101
 - 13,320 videos, 101 classes
- > HMDB-51
 - 6,766 videos, 51 classes

Temporal-related Datasets

Something-Something

- V1 : 108,499 videos, 174 classes
- V2 : 220,847 videos, 174 classes

Evaluation Metrics

- Top-1 precision
- Average FLOPs/Video

FLOPs, which is short for float-point operations

Instantiation: MSDNet-38^[1] & ResNet-50^[2]

(b) Something-Something v2

[1] Gao Huang and Danlu Chen. Multi-scale dense networks for resource efficient image classification. In Proc. ICLR, 2018 [2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proc. CVPR, 2016.

Experiment: Ablation Study

Ablation experimental results with MSDNet backbone on Kinetics-400. "Full Inference" means that, for each video, only the prediction head of the last checkpoint is used.

Experiment: Ablation Study

Experiment

Comparison with State-of-the-arts

Framework	Backbone	Input \times # Clips	Prec@1	# Params	FLOPs/Video
I3D [1]	3D BN-Inception	[All×3×256×256]×1	70.24	12.7M	544.44G
S3D [34]	3D BN-Inception	[All×3×224×224]×1	72.20	8.8M	518.6G
ARTNet with TSN [28]	3D ResNet-18	[16×3×112×112]×250	69.2	35.2M	5925G
MF-Net [2]	-	[16×3×224×224]×1	65.00	8.0M	11.1G
		[16×3×224×224]×50	72.80	0.011	555G
ECO [35]	BN-Inception+3D ResNet-18	[16×3×224×224]×1	69.00	47.5M	64G
R(2+1)D RGB [27]	ResNet-34	[32×3×112×112]×10	72.00	63.8M	1524G
Nonlocal-I3d [31]	ResNet-50	[128×3×224×224]×1	67.30	35.33M	145.7G
		[128×3×224×224]×30	76.50	55.5511	4371G
	BN-Inception	[25×3×112×112]×10	69.1	10.7M	500G
TSN RGB [30]	ResNet-50	[8×3×224×224]×1	66.80	24.3M	33G
Kinetics -	4 O ResNet-50	[16×3×224×224]×1	67.80	24.3M	64G
TSM [20]	ResNet-50	[8×3×224×224]×1	70.60	24.3M	33G
13WI [20]		$[16 \times 3 \times 224 \times 224] \times 1$	72.50	24.3M	64G
StNet [12]	ResNet-50	[25×15×256×256]×1	69.85	33.16M	189.29G
	ResNet-101	[25×15×256×256]×1	71.38	52.15M	310.50G
	MSDNet-38 (Full)	[16×3×224×224]×1	71.17	62.31M	52G
Proposed	MSDNet-38	[16×3×224×224]×1	71.20	62.31M	26.5G
	ResNet-50	[16×3×224×224]×1	72.57	29.12M	35G
	ResNet-101	[16×3×224×224]×1	74.70	48.12M	66G

Method	Backbone	FLOPs	UCF-101	HMDB-51
ARTNet with TSN	3D ResNet-18	5925G	94.3	70.9
ECO	BNInception+ 3D ResNet-18	64G	92.8	68.5
I3D RGB	3D Inception-v1	544G	95.1	74.3
TSN RGB	BNInception	500G	91.1	-
TSN_{8F}	ResNet-50	33G	91.5	63.2
TSN_{16F}	Keshel-Ju	64G	91.4	63.6
TSM_{8F}	ResNet-50	33G	94.0	70.3
TSM_{16F}	Keshet-30	64G	94.5	70.7
StNet	ResNet-50	53G	93.5	-
UCF-101	MSDNet-38	15.8G	94.2	-
	R WISDING-30	29.2G	-	70.1
Proposed	ResNet-50	18.5G	94.7	-
HMDB-51		34.4G	-	72.34
	ResNet-101	34.6G	95.3	-
		69.1G	-	73.48

Method Backbone	Baakhana	Dustasia	FLOPs/Video	Something-Something v1		Something-Something v2				
	Pretrain FLOPs/Video	FLOPS VIDEO	top-1 val	top-5 val	top-1 val	top-5 val	top-1 test	top-5 test		
ECO_{16F}	BNInception+	Kinetics	64G	41.4	-	-	C4L	07L	X71 0	X 7
$ECO_{EN}Lite$	3D ResNet-18		267G	46.4	-	-	DU	I-21	V1 &	V
I3D	3D ResNet-50	Kinetics	306G	41.6	72.2	-	-	-	-	
Non-local I3D+GCN		Kineties	606G	46.1	76.8	-	-	-	-	
TSN _{8F}	ResNet-50 Kinetic	Vination	33G	19.7	46.6	27.8	57.6	-	-	
TSN_{16F}		Resider-50 Kinetics	65G	19.9	47.3	30.0	60.5	-	-	
TRN Multiscale	BNInception ImageNe	ImagaNat	33G	34.4	-	48.8	77.6	50.9	79.3	
TRN Two-Stream		Ninception imagenet	-	42.0	-	55.5	83.1	56.2	83.2	
TSM_{8F}	PerNet 50	ResNet-50 Kinetics	33G	43.4	73.2	58.2	84.8	-	-	
TSM_{16F}	Residet-30		65G	44.8	74.5	58.7	84.8	59.9	85.9	
Proposed	ResNet-50	ImageNet	52.8(v1)/48.0G(v2)	45.2	75.2	58.2	85.2	-	-	
	MSDNet-38	38.4G(v1)/35.4G(v2)	46.5	75.6	60.0	86.2	60.1	86.6		

Playing badminton

Bench pressing

(a) Two video instances which stop at the first checkpoint

Drawing

Garbage collecting

(b) Two video instances which stop at the middle checkpoint

Trimming trees

Tobogganing

(c) Two video instances which stop at the last checkpoint

中国科学院深圳先进技术研究院 SHENZHEN INSTITUTES OF ADVANCED TECHNOLOGY CHINESE ACADEMY OF SCIENCES

Thank you!

Dynamic Inference: A New Approach Toward Efficient Video Action Recognition

Contact: Wenhao Wu wuwenhao17@mails.ucas.edu.cn http://whwu95.github.io