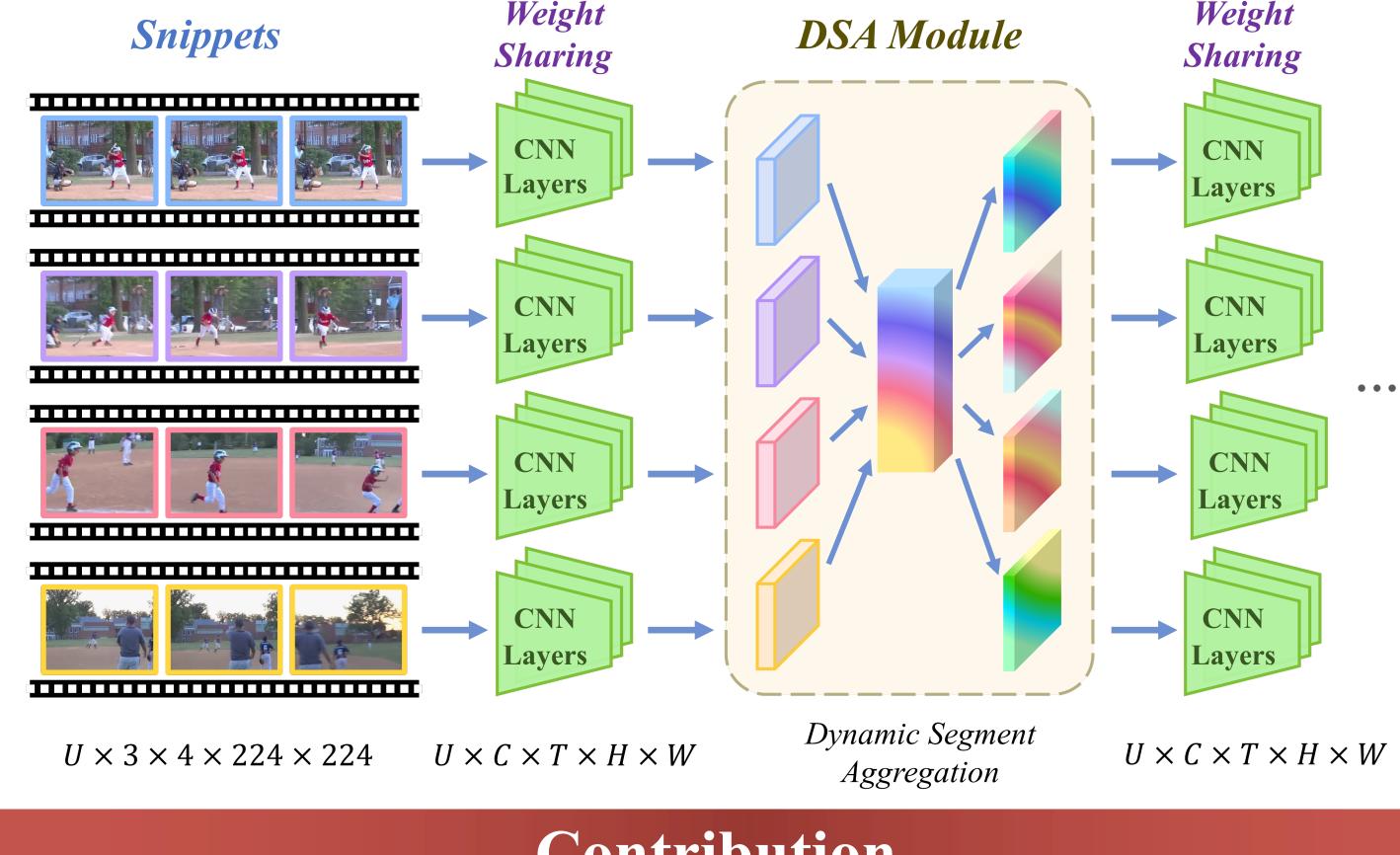
Paper ID #1017



DSANet: Dynamic Segment Aggregation Network for Video-Level Representation Learning

Wenhao Wu^{1*†}, Yuxiang Zhao^{1,2*}, Yanwu Xu³, Xiao Tan¹, Dongliang He¹, Zhikang Zou¹, Jin Ye¹, Yingying Li¹, Mingde Yao¹, Zichao Dong¹, Yifeng Shi¹

² Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences ³ University of Pittsburgh ¹ Baidu Inc.

Motivation	Ablation Studies					
Previous pipeline for video-level representation :	Ablation studies on Mini-Kinetics-200.					
	(a) Study on the effectiveness of DSA module. <i>T</i> denotes the number of frames sampled from each video snippet, <i>U</i> denotes the number of snippets. Backbone: I3D R18. (b) Study on different position to insert DSA module. Setting: I3D					
1. (Training) Intra-clip modeling (e.g., C3D/TSM/SlowFast, etc)	R50. $\alpha = 2, \beta = 1, \text{ stage: res}_5.$					
2. (Inference) Average the predictions of multiple clips	Model $T_{train} \times U_{train}$ $T_{infer} \times U_{infer} \times \#$ crop Top-1 Top-5 Params					
	I3D R18 4 × 1 4 × 10 × 3 72.2 91.2 32.3M Position Top-1 Top-5					
Can we learn video-level representations directly?	I3D R18 16×1 $16 \times 10 \times 3$ 73.4 91.1 $32.3M$ I 81.4 95.4 TONE IOD D10 41.4 41.4 91.2 $92.3M$ I 81.4 95.4					
	TSN+I3D R18 4 × 4 4 × 10 × 3 73.0 91.3 32.3M II 81.5 95.2 V4D+I3D R18 4 × 4 4 × 10 × 3 75.6 92.7 33.1M III 80.8 95.2					
	V4D+I3D R18 4 × 4 4 × 10 × 3 75.6 92.7 33.1M III 80.8 95.2 DSA+I3D R18 4 × 4 4 × 8 × 3 77.3 93.9 32.3M IV 81.4 95.1					
Intra-clip modeling (3D: $T^{H^*W} \rightarrow Inter$ -clip modeling (4D: $U^{T^*H^*W}$)	(c) Parameter choices of α . Set- (d) The DSA blocks in different (e) Parameter choices of β . Set- (f) The number of DSA block in-					
➢ 4D Convolution: effective but expensive	ting: I3D R50, Position II, β =1, stage of I3D R50. Setting: Positing: I3D R50, Position II, α =2, in-serted into I3D R50. Setting: Pos					
+D Convolution. enective out expensive	inserted stage: res ₅ . tion II, $\alpha = 2$, $\beta = 1$. serted stage: res ₅ . tion II, $\alpha = 2$, $\beta = 1/8$.					
> TSN: temporal modeling unexplored but simple	SettingTop-1Top-5StageTop-1Top-5StagesBlocksTop-1Top-5					
	$\alpha = 1$ 81.0 95.1 res{2} 81.4 94.7 $\beta = 1$ 81.5 95.2 res{5} 1 81.5 95.0					
> We focus on efficient and effective video-level representation learning	$\alpha = 2 \qquad 81.5 95.2 \qquad \operatorname{res}\{3\} 81.3 95.1 \qquad \beta = 1/2 81.7 95.4 \qquad \operatorname{res}\{4,5\} 4 81.5 95.3$					
Weight Weight Weight	$\alpha = 4$ 81.2 95.0 res{4} 81.3 95.3 $\beta = 1/4$ 81.6 95.0 res{3,4} 5 81.8 95.4					
Snippets DSA Module Vergni	$\alpha = 8$ 81.3 95.0 res{5} 81.5 95.2 $\beta = 1/8$ 81.5 95.0 res{2,3} 3 81.4 95.1					

Contribution

 \succ Instead of snippet-level temporal modeling, we propose to exploit an

(g) Different short-term temporal structure for DSA module.

Model	Top-1	Top-5
TSM R50	77.4	93.4
DSA+TSM R50	80.4	95.0
I3D R50	78.0	93.9
DSA+I3D R50	81.8	95.4

(h) Study on the effectiveness of DSA module with different backbones (I3D R18, I3D R50). SENet+I3D uses SE module to replace the DSA module in DSANet.

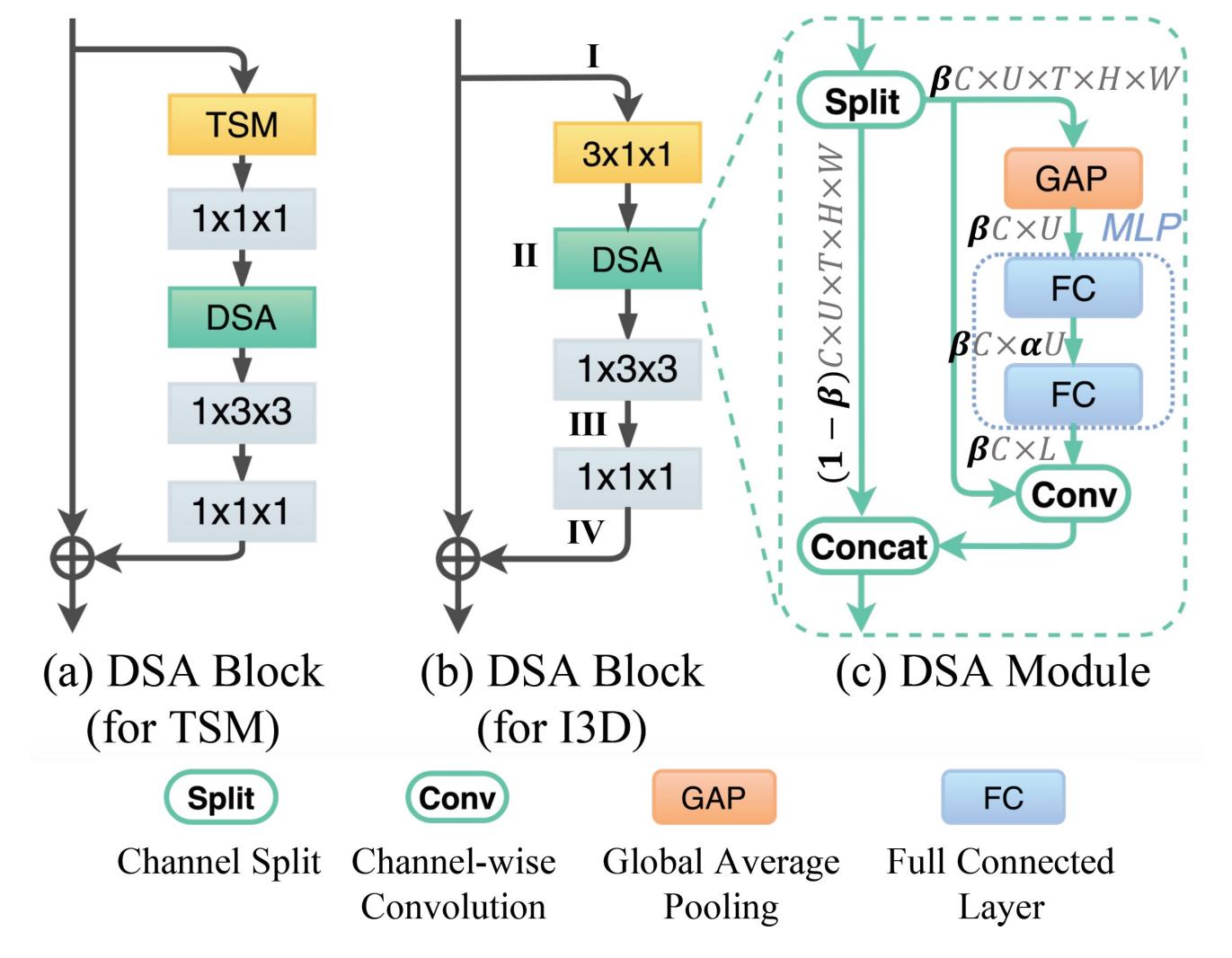
Arch.	I3D	SENet+I3D	DSA+I3D
ResNet18	72.2	73.8	77.3
ResNet50	78.0	78.5	81.8

(i) Training FLOPs. Comparison with V4D, the extra computation cost brought by the DSA module is close to zero.

Model	Input size	FLOPs
TSN+I3D R50	$4 \times 4 \times 224^2 \times 3$	83.8G
V4D+I3D R50	$4 \times 4 \times 224^2 \times 3$	143.0G
DSA+I3D R50	$4 \times 4 \times 224^2 \times 3$	83.8G

Comparison with SOTAs

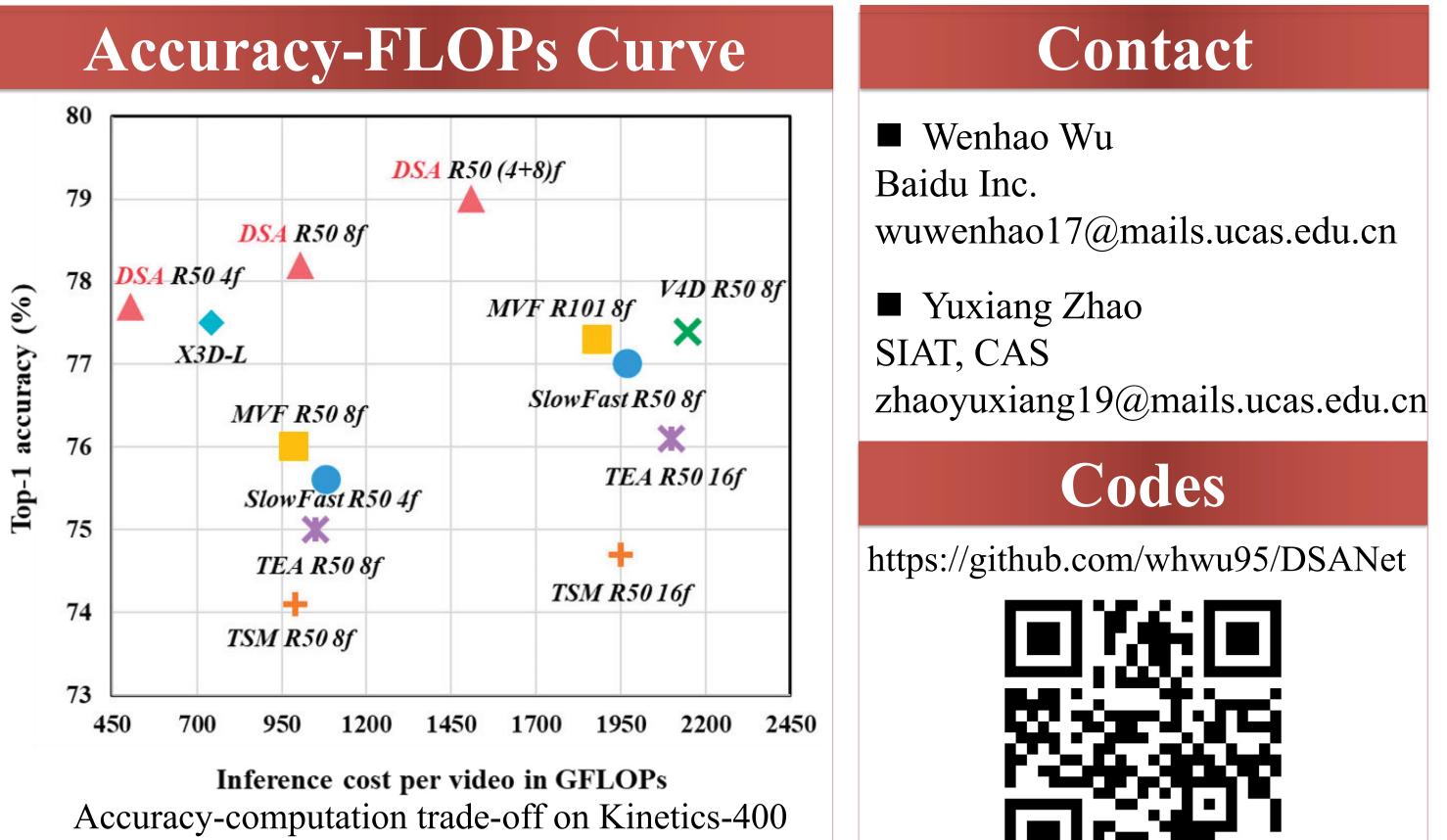
Results on Mini-Kinetics-200 dataset


Method	Backbone	$T_{train} \times U_{train}$	$T_{infer} \times U_{infer} \times \# crop$	Top-1	Top-5
S3D [37]	S3D Inception	64×1	N/A	78.9%	-
I3D [38]	3D ResNet50	32×1	$32 \times 10 \times 3$	75.5%	92.2%
I3D [38]	3D ResNet101	32×1	$32 \times 10 \times 3$	77.4%	93.2%
I3D+NL [38]	3D ResNet50	32×1	$32 \times 10 \times 3$	77.5%	94.0%
I3D+CGNL [38]	3D ResNet50	32×1	$32 \times 10 \times 3$	78.8%	94.4%
I3D+NL [38]	3D ResNet101	32×1	$32 \times 10 \times 3$	79.2%	93.2%
I3D+CGNL [38]	3D ResNet101	32×1	$32 \times 10 \times 3$	79.9%	93.4%
V4D+I3D [39]	3D ResNet18	4×4	$4 \times 10 \times 3$	75.6%	92.7%
V4D+I3D [39]	3D ResNet50	4×4	$4 \times 10 \times 3$	80.7%	95.3%
DSA+I3D (Ours)	3D ResNet18	4×4	$4 \times 8 \times 3$	77.3%	93.9%
DSA+I3D (Ours)	3D ResNet50	4×4	$4 \times 8 \times 3$	<u>81.8%</u>	<u>95.4%</u>

Results on Kinetics-400 dataset.

- effective and efficient video-level framework for learning video representation. To tackle this, the proposed **DSA module** provides a novel mechanism to adaptively aggregate snippet-level features.
- > The DSA module works in a **plug-and-play** way and can be easily integrated into existing snippet-level methods. Without any bells and whistles, the DSA module brings consistent improvements when combined with both 2D CNN-based and 3D CNN-based networks (e.g., TSM, I3D, *etc*).
- > Extensive experiments on four public benchmark datasets demonstrate that the proposed DSA obtain an evident improvement over previous long-range modeling methods with a minimal computational cost.

Method



Method	Backbone	$T_{infer} \times U_{infer} \times \#$ crop	GFLOPs	Top-1	Top-5
TSM [17]	ResNet-50	8×10×3	33×30=990	74.1%	91.2%
TEINet [19]	ResNet-50	8×10×3	33×30=990	74.9%	91.8%
TEA [16]	ResNet-50	8×10×3	35×30=1050	75.0%	91.8%
TANet [20]	ResNet-50	8×10×3	43×30=1290	76.1%	92.3%
MVFNet [34]	ResNet-50	8×10×3	33×30=990	76.0%	92.4%
NL+I3D [31]	3D ResNet-50	32×10×3	$70.5 \times 30 = 2115$	74.9%	91.6%
NL+I3D [31]	3D ResNet-50	128×10×3	282×30=8460	76.5%	92.6%
X3D-L [7]	-	16×10×3	$24.8 \times 30 = 744$	77.5%	92.9%
Slowfast [8]	3D R50+3D R50	$(4+32) \times 10 \times 3$	36.1×30=1083	75.6%	92.1%
Slowfast [8]	3D R50+3D R50	$(8+32) \times 3 \times 10$	65.7×30=1971	77.0%	92.6%
Slowfast [8]	3D R101+3D R101	$(8+32) \times 3 \times 10$	$106 \times 30 = 3180$	77.9%	93.2%
Slowonly [8]	3D ResNet-50	8×10×3	41.9×30=1257	74.9%	91.5%
V4D+I3D [39]	3D ResNet-50	8×10×3	286.1×2.5×3=2146*	77.4%	93.1%
DSA+I3D (Ours)	3D ResNet-50	4×8×3	83.8×2×3=503	77.7%	93.1%
DSA+I3D (Ours)	3D ResNet-50	8×8×3	167.7×2×3=1006	78.2%	93.2%
DSA+I3D (Ours)	3D ResNet-50	$(4+8) \times 8 \times 3$	251.5×2×3=1509	79.0%	93.7%

Results on ActivityNet 1.3 dataset.			
Model	Backbone	mAP	
TSN [30]	BN-Inception	79.7%	
TSN [30]	Inception V3	83.3%	
TSN-Top3 [30]	Inception V3	84.5%	
V4D+I3D [39]	3D ResNet50	88.9%	
DSA+I3D (Ours)	3D ResNet50	90.5%	

	Method	Backbone	Top-1
	MultiScale TRN [40]	BN-Inception	34.4%
Results on	ECO [41]	BN-Inception+3D ResNet 18	46.4%
Something-	S3D-G [37]	S3D Inception	45.8%
0	Nonlocal+GCN [32]	3D ResNet50	46.1%
Something	TSM [17]	ResNet50	47.2%
V1 dataset.	I3D (our impl.)	3D ResNet50	48.7%
	V4D+I3D [39]	3D ResNet50	50.4%
	DSA+I3D (Ours)	3D ResNet50	51.8%

for different methods in the **inference phase**