

DSANet: Dynamic Segment Aggregation Network for Video-Level Representation Learning

Wenhao Wu^{1*†}, Yuxiang Zhao^{1,2*}, Yanwu Xu³, Xiao Tan¹, Dongliang He¹, Zhikang Zou¹, Jin Ye¹, Yingying Li¹, Mingde Yao¹, Zichao Dong¹, Yifeng Shi¹ ¹ Baidu Inc. ² Shenzhen Institute of Advanced Technology, CAS ³ University of Pittsburgh

ACMMM 2021

Video Recognition: classify the short clip or untrimmed video into pre-defined class.

Video Recognition: classify the short clip or untrimmed video into pre-defined class.

- More than simply recognizing objects
- Complex person-person interaction & people-object interactions
- Videos bring motions

How to get the video-level prediction?

Classical Pipeline:

- 1. (Training) Intra-clip modeling (e.g., C3D/TSM/SlowFast, etc)
- 2. (Inference) Average the predictions of multiple clips

Snippets

How to get the video-level prediction?

Classical Pipeline

Prominent problems:
No interaction among clips
Training and Inference are not consistent

Can we learn video-level representations directly?

Motivation *How to get the video-level prediction?*

Can we learn video-level representations directly?

Intra-clip modeling (3D: $T^{H^{W}} \rightarrow$ Inter-clip modeling (4D: $U^{T^{H^{W}}}$)

- ➤ TSN^[1]: temporal modeling unexplored but simple
- ➢ 4D Convolution^[2]: effective but expensive
- > We focus on **efficient** and **effective** video-level representation learning

[1] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua Lin, Xiaoou Tang, and Luc Van Gool. 2016. Temporal segment networks: Towards good practices for deep action recognition. In Proc. ECCV.

[2] Shiwen Zhang, Sheng Guo, Weilin Huang, Matthew R Scott, and Limin Wang. 2020. V4D: 4D Convolutional Neural Networks for Videolevel Representation Learning. In Proc. ICLR.

DSA Module

We propose a light-weight Dynamic Snippets Aggregation module to improve performance !

DSANet

Solving Problems

- Adaptively aggregate snippets to enhance temporal interaction
- Convolution on channel wise to reduce computation burden

Ablation Studies

Effectiveness

(a) Study on the effectiveness of DSA module. *T* denotes the number of frames sampled from each video snippet, *U* denotes the number of snippets. Backbone: I3D R18.

Model	$T_{train} \times U_{train}$	$T_{infer} \times U_{infer} \times \# crop$	Top-1	Top-5	Params
I3D R18	4×1	$4 \times 10 \times 3$	72.2	91.2	32.3M
I3D R18	16×1	$16 \times 10 \times 3$	73.4	91.1	32.3M
TSN+I3D R18	4×4	$4 \times 10 \times 3$	73.0	91.3	32.3M
V4D+I3D R18	4×4	$4 \times 10 \times 3$	75.6	92.7	33.1M
DSA+I3D R18	4×4	$4 \times 8 \times 3$	77.3	93.9	32.3M

(i) Training FLOPs. Comparison with V4D, the extra computation cost brought by the DSA module is close to zero.

Model	Input size	FLOPs
TSN+I3D R50	$4 \times 4 \times 224^2 \times 3$	83.8G
V4D+I3D R50	$4 \times 4 \times 224^2 \times 3$	143.0G
DSA+I3D R50	$4 \times 4 \times 224^2 \times 3$	83.8G

Ablation Studies

(b) Study on different position to insert DSA module. Setting: I3D R50, α =2, β =1, stage: res₅.

Position	Top-1	Top-5
Ι	81.4	95.4
II	81.5	95.2
III	80.8	95.2
IV	81.4	95.1

(c) Parameter choices of α . Setting: I3D R50, Position II, $\beta=1$, inserted stage: res₅.

Setting	Top-1	Top-5
$\alpha = 1$	81.0	95.1
$\alpha = 2$	81.5	95.2
$\alpha = 4$	81.2	95.0
$\alpha = 8$	81.3	95.0

ACM multimedia

(d) The DSA blocks in different stage of I3D R50. Setting: Position II, $\alpha=2$, $\beta=1$.

Stage	Top-1	Top-5
res{2}	81.4	94.7
res{3}	81.3	95.1
res{4}	81.3	95.3
res{5}	81.5	95.2

(e) Parameter choices of β . Setting: I3D R50, Position II, α =2, inserted stage: res₅.

Setting	Top-1	Top-5
$\beta=1$	81.5	95.2
$\beta = 1/2$	81.7	95.4
$\beta = 1/4$	81.6	95.0
β =1/8	81.5	95.0

(f) The number of DSA block inserted into I3D R50. Setting: Position II, $\alpha = 2$, $\beta = 1/8$.

Stages	Blocks	Top-1	Top-5
res{5}	1	81.5	95.0
res{4,5}	4	81.5	95.3
res{3,4}	5	81.8	95.4
res{2,3}	3	81.4	95.1

Ablation Studies

Complementary with clip-based methods

(g) Different short-term temporal structure for DSA module.

Model	Top-1	Top-5
TSM R50	77.4	93.4
DSA+TSM R50	80.4	95.0
I3D R50	78.0	93.9
DSA+I3D R50	81.8	95.4

Complementary with different backbones

(h) Study on the effectiveness of DSA module with different backbones (I3D R18, I3D R50). SENet+I3D uses SE module to replace the DSA module in DSANet.

Arch.	I3D	SENet+I3D	DSA+I3D
ResNet18	72.2	73.8	77.3
ResNet50	78.0	78.5	81.8

Top-1

Top-5

GFLOPs

Comparison with SOTAs

Kinetics-400

Backbone

Method

TSM [17]	ResNet-50	8×10×3	33×30=990	74.1%	91.2%
TEINet [19]	ResNet-50	8×10×3	33×30=990	74.9%	91.8%
TEA [16]	ResNet-50	8×10×3	35×30=1050	75.0%	91.8%
TANet [20]	ResNet-50	8×10×3	43×30=1290	76.1%	92.3%
MVFNet [34]	ResNet-50	8×10×3	33×30=990	76.0%	92.4%
NL+I3D [31]	3D ResNet-50	32×10×3	70.5×30=2115	74.9%	91.6%
NL+I3D [31]	3D ResNet-50	128×10×3	282×30=8460	76.5%	92.6%
X3D-L [7]	-	16×10×3	24.8×30=744	77.5%	92.9%
Slowfast [8]	3D R50+3D R50	(4+32)×10×3	36.1×30=1083	75.6%	92.1%
Slowfast [8]	3D R50+3D R50	(8+32)×3×10	65.7×30=1971	77.0%	92.6%
Slowfast [8]	3D R101+3D R101	(8+32)×3×10	106×30=3180	77.9%	93.2%
Slowonly [8]	3D ResNet-50	8×10×3	41.9×30=1257	74.9%	91.5%
V4D+I3D [39]	3D ResNet-50	8×10×3	286.1×2.5×3=2146*	77.4%	93.1%
DSA+I3D (Ours)	3D ResNet-50	4×8×3	83.8×2×3=503	77.7%	93.1%
DSA+I3D (Ours)	3D ResNet-50	8×8×3	167.7×2×3=1006	78.2%	93.2%
DSA+I3D (Ours)	3D ResNet-50	(4+8)×8×3	251.5×2×3=1509	7 <u>9.0%</u>	93.7%

 $T_{infer} \times U_{infer} \times \#$ crop

Accuracy-computation trade-off

Comparison with SOTAs

Mini-Kinetics-200

Method	Backbone	$T_{train} \times U_{train}$	$T_{infer} \times U_{infer} \times #$ crop	Top-1	Top-5
S3D [37]	S3D Inception	64×1	N/A	78.9%	-
I3D [38]	3D ResNet50	32×1	$32 \times 10 \times 3$	75.5%	92.2%
I3D [38]	3D ResNet101	32×1	$32 \times 10 \times 3$	77.4%	93.2%
I3D+NL [38]	3D ResNet50	32×1	$32 \times 10 \times 3$	77.5%	94.0%
I3D+CGNL [38]	3D ResNet50	32×1	$32 \times 10 \times 3$	78.8%	94.4%
I3D+NL [38]	3D ResNet101	32×1	$32 \times 10 \times 3$	79.2%	93.2%
I3D+CGNL [38]	3D ResNet101	32×1	$32 \times 10 \times 3$	79.9%	93.4%
V4D+I3D [39]	3D ResNet18	4×4	$4 \times 10 \times 3$	75.6%	92.7%
V4D+I3D [39]	3D ResNet50	4×4	$4 \times 10 \times 3$	80.7%	95.3%
DSA+I3D (Ours)	3D ResNet18	4×4	$4 \times 8 \times 3$	77.3%	93.9%
DSA+I3D (Ours)	3D ResNet50	4×4	$4 \times 8 \times 3$	81.8%	95.4%

ActivityNet v1.3

Model	Backbone	mAP
TSN [30]	BN-Inception	79.7%
TSN [30]	Inception V3	83.3%
TSN-Top3 [30]	Inception V3	84.5%
V4D+I3D [39]	3D ResNet50	88.9%
DSA+I3D (Ours)	3D ResNet50	90.5%

Something-Something V1

Method	Backbone	Top-1
MultiScale TRN [40]	BN-Inception	34.4%
ECO [41]	BN-Inception+3D ResNet 18	46.4%
S3D-G [37]	S3D Inception	45.8%
Nonlocal+GCN [32]	3D ResNet50	46.1%
TSM [17]	ResNet50	47.2%
I3D (our impl.)	3D ResNet50	48.7%
V4D+I3D [39]	3D ResNet50	50.4%
DSA+I3D (Ours)	3D ResNet50	51.8%

Visualization

Ground Truth: air drumming

DSANet Prediction: air drumming

Average Prediction: using computer

Ground Truth: clean and jerk

DSANet Prediction: clean and jerk

Average Prediction: deadlifting

Dynamic aggregation

Average aggregation

中国科学院深圳先进技术研究院 SHENZHEN INSTITUTES OF ADVANCED TECHNOLOGY CHINESE ACADEMY OF SCIENCES

Thank you for your attention!

Codes https://github.com/whwu95/DSANet

Contact
 Wenhao Wu
 Baidu Inc.
 wuwenhao17@mails.ucas.edu.cn