

- accuracy on Kinetics-400, and outperforms previous methods by $20 \sim 50\%$ absolute top-1 accuracy under zero-shot, few-shot settings.

Revisiting Classifier: Transferring Vision-Language Models for Video Recognition

Wenhao Wu^{1,2}

¹The University of Sydney

METHOD

(c) Revisiting the classifier for efficient tuning

ABLATION STUDIES

	Zero-shot	2-shot	Full-shot	Paradigm	Batch Gather	Textual Encoder	Top-1	V100-days
Vision-Only Vision-Text	0.2 54.2	43.6 66.4	75.27 80.13	Contrastive- Based	✓ ✓ ×	online offline online offline	81.2 80.7 77.8 76.1	6.7 (10*) 6.6 3.5 3.3
Comparisoi	ns with visio	оп-опту п	ramework	Ours	X	offline	81.5	3.3

Offline classifier from	Top 1
Random normal matrix	59.3
Random orthogonal matrix	59.4
Linear discriminant projection	80.8
DistilBERT	81.4
Textual encoder of CLIP	81.5

Method	Top-1	FLOPs	Params	Throughput
ViViT-L/16-320 [1]	81.3	3992G	310.8M	4.2 vid/s*
Ours ViT-B/32	78.5	23.7G	71.6M	322.5 vid/s
Ours ViT-B/16	81.5	90.3G	69.9M	126.5 vid/s
Ours ViT-L/14				35.5 vid/s

Exploration of different frozen classifiers

Zhun Sun²

Wanli Ouyang^{1,3}

³Shanghai AI Laboratory ²Baidu Inc.

Comparisons with contrastive-based framework

Analysis on inference efficiency

Comparisons with SOTAs

Method	Input	Pre-train	Top-1	Top-5	FLOPs×Views	Param
NL I3D-101 [58]	128×224^{2}	IN-1K	77.7	93.3	359×10×3	61.8
$MVFNet_{En}$ [60]	24×224^{2}	IN-1K	79.1	93.8	188×10×3	-
SlowFast NL101 [14]	16×224^{2}	Scratch	79.8	93.9	234×10×3	59.9
X3D-XXL [13]	16×440^{2}	Scratch	80.4	94.6	144×10×3	20.3
MViT-B, 64×3 [11]	64×224^{2}	Scratch	81.2	95.1	455×3×3	36.6
Methods with large-scale pre-	-training					
TimeSformer-L [2]	96×224^{2}	IN-21K	80.7	94.7	2380×1×3	121.4
ViViT-L/16×2 [1]	32×320^{2}	IN-21K	81.3	94.7	3992×4×3	310.8
VideoSwin-L [36]	32×384^{2}	IN-21K	84.9	96.7	$2107 \times 10 \times 5$	200.0
ip-CSN-152 [51]	32×224^{2}	IG-65M	82.5	95.3	109×10×3	32.8
ViViT-L/16×2 [1]	32×320^{2}	JFT-300M	83.5	95.5	3992×4×3	310.8
ViViT-H/16×2 [1]	32×224^{2}	JFT-300M	84.8	95.8	8316×4×3	647.5
TokLearner-L/10 [44]	32×224^{2}	JFT-300M	85.4	96.3	4076×4×3	450
MTV-H [66]	32×224^{2}	JFT-300M	85.8	96.6	3706×4×3	-
CoVeR [71]	16×448^{2}	JFT-300M	86.3	-	$-\times1\times3$	-
Florence [69]	32×384^{2}	FLD-900M	86.5	97.3	-×4×3	647
CoVeR [71]	16×448^{2}	JFT-3B	87.2	-	-×1×3	-
VideoPrompt ViT-B/16 [25]	16×224^{2}	WIT-400M	76.9	93.5	-	-
ActionCLIP ViT-B/16 [57]	32×224^{2}	WIT-400M	83.8	96.2	563×10×3	141.7
Ours ViT-L/14	32×224^{2}	WIT-400M	87.1	97.4	1662×4×3	230.7
Ours ViT-L/14	32×336^{2}	WIT-400M	87.8	97.6	3829×1×3	230.7

Results on Kinetics-400 dataset

Comparison with Few-shot SOTAs

Method	shot	HMDB	UCF	ANet	K400
VideoSwin [36]	2	20.9	53.3	-	-
VideoPrompt [25]	5	56.6	79.5	-	58.5
X-Florence [40]	2	51.6	84.0	-	-
	0	53.8	71.9	75.6	61.0
Ours ViT-L	1	72.7	96.4	89.0	75.8
Ours VII-L	2	73.5	96.6	90.3	78.2
	All	80.1	96.9	91.1	84.7

Comparison with Zero-shot SOTAs

Method	UCF* / UCF	HMDB* / HMDB	ANet*/ ANet	Kinetics-600
GA [<mark>38</mark>]	17.3±1.1/-	19.3±2.1 / -	-	-
TS-GCN [15]	34.2±3.1/-	23.2±3.0 / -	-	-
E2E [3]	44.1 / 35.3	29.8 / 24.8	26.6 / 20.0	-
DASZL [27]	48.9±5.8 / -	- / -	-	-
ER [7]	51.8±2.9 / -	35.3±4.6 / -	-	42.1 ± 1.4
ResT [32]	58.7±3.3 / 46.7	41.1±3.7 / 34.4	32.5 / 26.3	-
Ours	85.8±3.3 / 79.6	58.1±5.7 / 49.8	84.6±1.4 / 77.4	68.9±1.0

THE 37TH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE

FEBRUARY 7-14, 2023 · WASHINGTON, DC, USA WALTER E. WASHINGTON CONVENTION CENTER

EXPERIMENTS

Top-1	mAP
-	89.9
85.7	90.1
-	90.5
88.7	93.7
90.2	94.3
92.9	96.5
92.9 93.3	96.5 96.9
	96.9
93.3	96.9
93.3 Activit	96.9 tyNet
93.3 Activit	96.9 tyNet HMDB-5
93.3 Activit CF-101 4.3%	96.9 tyNet HMDB-5 70.9%
	- 85.7 - 88.7

Results on UCF101 & HMDB51

Ours ViT-L (336[†]) 98.2% 81.3%

95.9%

96.6%

97.4%

98.1%

73.5%

72.2%

72.1%

75.7%

76.4%

81.3%

TSM [33

STM [24

TEINet [3

MVFNet [

Ours ViT-L

TDN [56