

Revisiting Classifier: Transferring Vision-Language Models for Video Recognition

Wenhao Wu^{1,2}

Zhun Sun²

Wanli Ouyang^{1,3}

¹The University of Sydney

²Baidu Inc.

³Shanghai Al Laboratory

AAAI 2023

Task: What is Video Recognition?

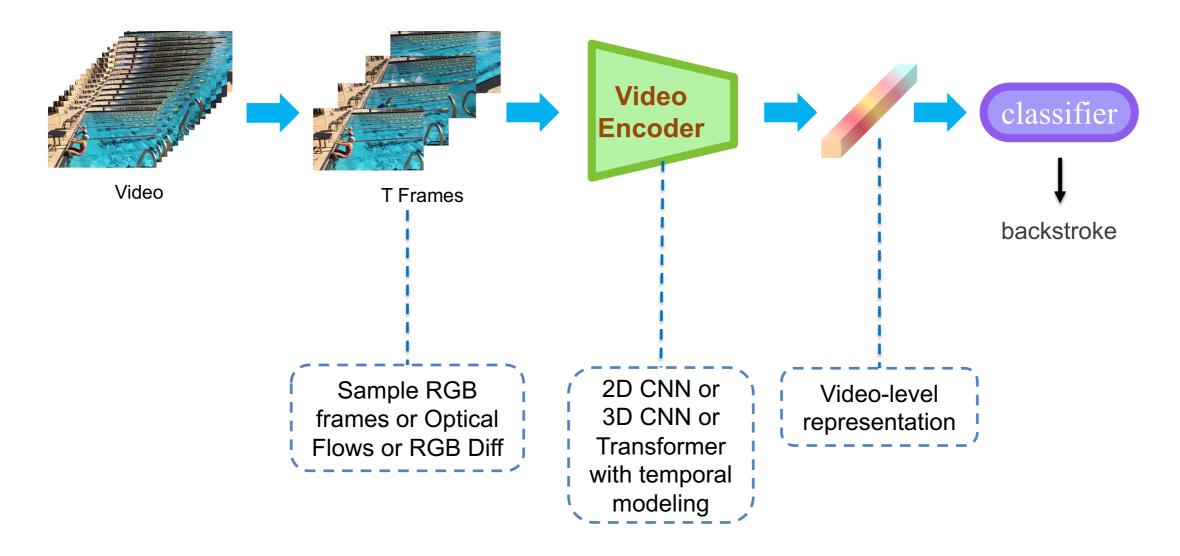
Video Recognition: classify the short clip or untrimmed video into pre-defined class.

Task: What is Video Recognition?

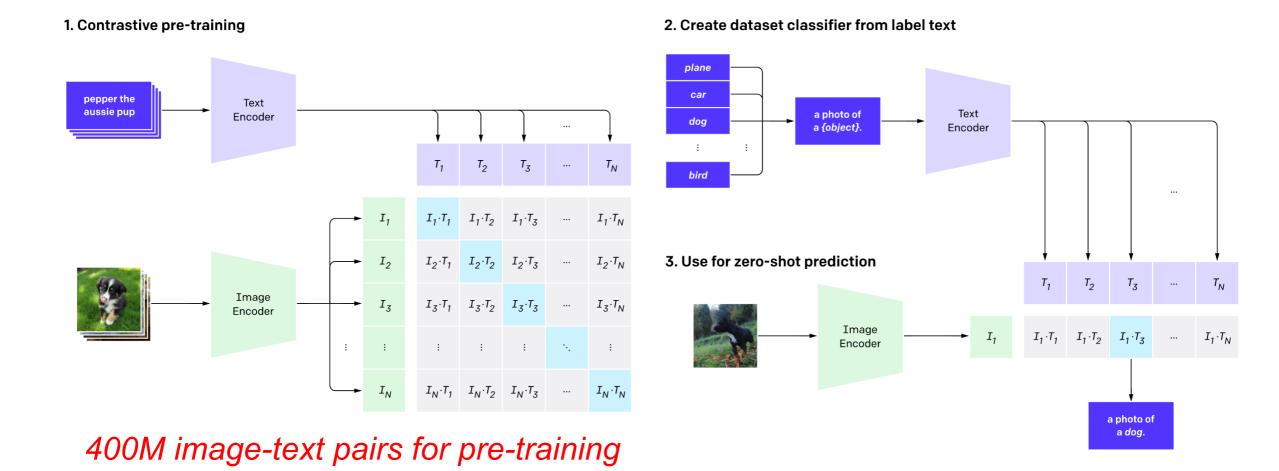
Video Recognition: classify the short clip or untrimmed video into pre-defined class.

- More than simply recognizing objects
- Complex person-person interaction & people-object interactions
- Videos bring motions

Video Recognition Pipeline



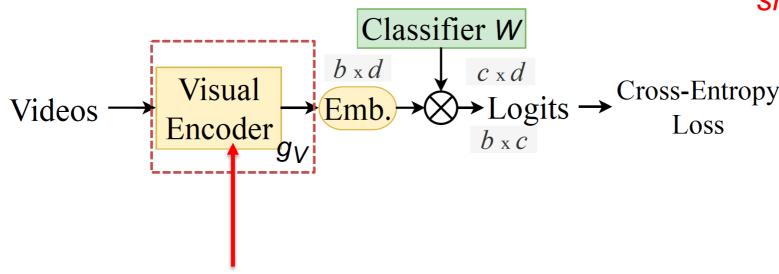
CLIP: A Web-scale Pre-trained Vision-Language Model



Radford, Alec, et al. "Learning transferable visual models from natural language supervision." *International Conference on Machine Learning*. PMLR, 2021.

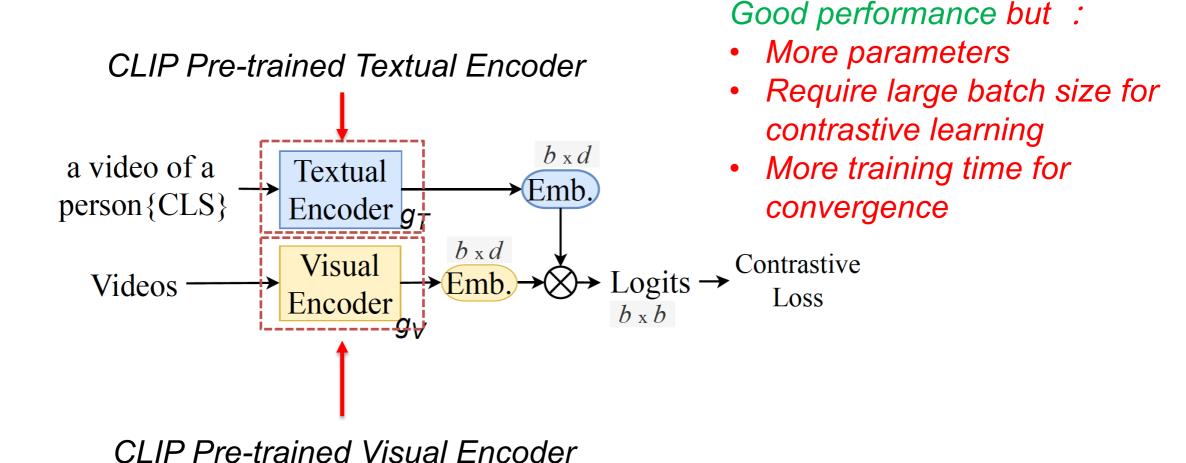
1. The typical vision-only transferring framework

Efficient Training but limited performance, especially on zero/few shot scenario



CLIP Pre-trained Visual Encoder

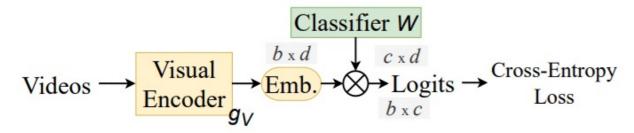
2. The recent vision-language transferring framework



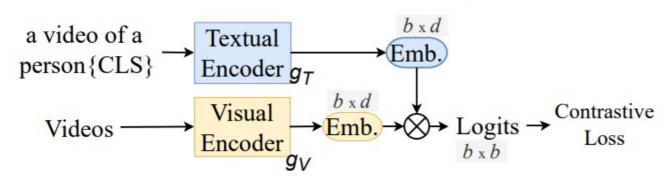
3. Our efficient vision-language transferring framework

Efficient but not effective

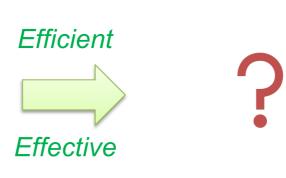
Existing transferring paradigm for video recognition



(a) Standard vision-only tuning paradigm



(b) Vision-language tuning paradigm



Effective but not efficient

3. Our efficient vision-language transferring framework

Key Observations: Revisiting Classifier

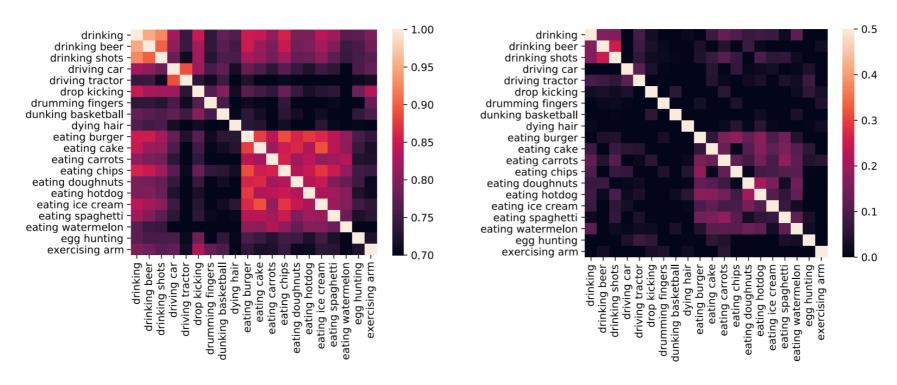
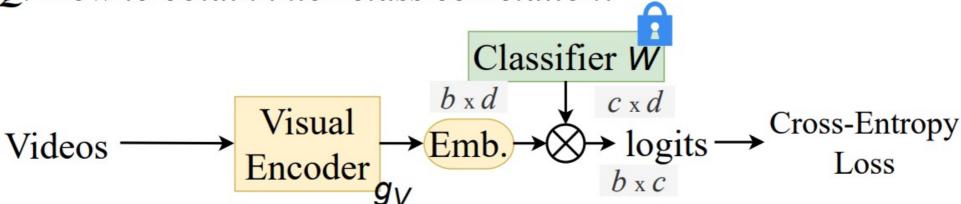


Figure. Inter-class correlation maps of "embeddings of class labels" for 20 categories on Kinetics-400. **Left**: The extracted textual vectors of class labels, **Right**: The "embeddings" from learned classifier.

3. Our efficient vision-language transferring framework

Revisiting Classifier: From a frozen classifier perspective

Q: How to obtain inter-class correlation?

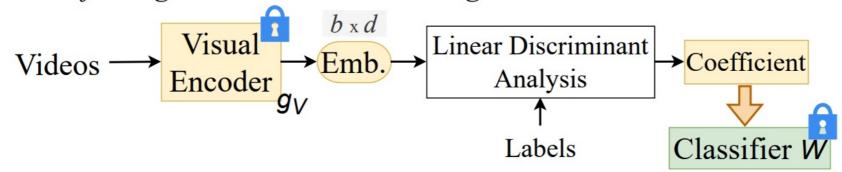


3. Our efficient vision-language transferring framework

Revisiting Classifier: From a frozen classifier perspective

Q: How to obtain inter-class correlation?

A1: Transferring visual statistic knowledge.



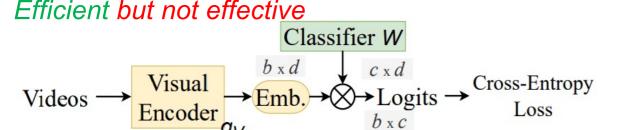
A2: Transferring textual semantic knowledge.

CLS₁, CLS₂, ..., CLS_c
$$\rightarrow$$
 Textual $\xrightarrow{c \times d}$ Emb. Classifier \xrightarrow{W}

(c) Revisiting the classifier for efficient tuning

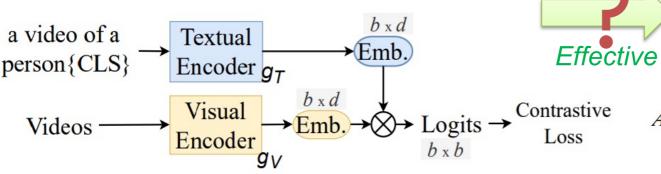
3. Our efficient vision-language transferring framework

Existing transferring paradigm for video recognition Revisiting Classifier: From a frozen classifier perspective **Q**: How to obtain inter-class correlation?



Classifier

(a) Standard vision-only tuning paradigm



A2: Transferring textual semantic knowledge.

Efficient A1: Transferring visual statistic knowledge.

CLS₁, CLS₂, ..., CLS_c
$$\rightarrow$$
 Textual Encoder g_T Emb. Classifier W

Labels

Coefficient

(b) Vision-language tuning paradigm

Effective but not efficient

(c) Revisiting the classifier for efficient tuning

Comparisons with SOTAs

Method	Input	Pre-train	Top-1	Top-5	FLOPs×Views	Param
NL I3D-101 [58]	128×224^{2}	IN-1K	77.7	93.3	$359 \times 10 \times 3$	61.8
$MVFNet_{En}$ [60]	24×224^{2}	IN-1K	79.1	93.8	$188 \times 10 \times 3$	-
SlowFast NL101 [14]	16×224^{2}	Scratch	79.8	93.9	$234 \times 10 \times 3$	59.9
X3D-XXL [13]	16×440^{2}	Scratch	80.4	94.6	$144 \times 10 \times 3$	20.3
MViT-B, 64×3 [11]	64×224^{2}	Scratch	81.2	95.1	$455 \times 3 \times 3$	36.6
Methods with large-scale pre-	training					
TimeSformer-L [2]	96×224^{2}	IN-21K	80.7	94.7	$2380\times1\times3$	121.4
ViViT-L/16×2 [1]	32×320^{2}	IN-21K	81.3	94.7	$3992\times4\times3$	310.8
VideoSwin-L [36]	32×384^{2}	IN-21K	84.9	96.7	$2107 \times 10 \times 5$	200.0
ip-CSN-152 [51]	32×224^{2}	IG-65M	82.5	95.3	$109 \times 10 \times 3$	32.8
ViViT-L/16×2 [1]	32×320^{2}	JFT-300M	83.5	95.5	$3992\times4\times3$	310.8
ViViT-H/16×2 [1]	32×224^{2}	JFT-300M	84.8	95.8	$8316\times4\times3$	647.5
TokLearner-L/10 [44]	32×224^{2}	JFT-300M	85.4	96.3	$4076 \times 4 \times 3$	450
MTV-H [66]	32×224^{2}	JFT-300M	85.8	96.6	$3706\times4\times3$	-
CoVeR [71]	16×448^{2}	JFT-300M	86.3	-	$-\times1\times3$	-
Florence [69]	32×384^{2}	FLD-900M	86.5	97.3	$-\times 4\times 3$	647
CoVeR [71]	16×448^{2}	JFT-3B	87.2	-	$-\times1\times3$	-
VideoPrompt ViT-B/16 [25]	16×224^{2}	WIT-400M	76.9	93.5	-	-
ActionCLIP ViT-B/16 [57]	32×224^{2}	WIT-400M	83.8	96.2	563×10×3	141.7
Ours ViT-L/14	32×224^{2}	WIT-400M	87.1	97.4	1662×4×3	230.7
Ours ViT-L/14	32×336^{2}	WIT-400M	87.8	97.6	3829×1×3	230.7

Results on Kinetics	s-400 dataset
---------------------	---------------

Method	Top-1	mAP
ListenToLook [16]	-	89.9
MARL [61]	85.7	90.1
DSANet [62]	-	90.5
TSQNet [63]	88.7	93.7
NSNet [64]	90.2	94.3
Ours ViT-L	92.9	96.5
Ours ViT-L (336↑)	93.3	96.9

Results on ActivityNet dataset

Method	UCF-101	HMDB-51
ARTNet [55]	94.3%	70.9%
I3D [6]	95.6%	74.8%
R(2+1)D[52]	96.8%	74.5%
S3D-G [65]	96.8%	75.9%
TSM [33]	95.9%	73.5%
STM [24]	96.2%	72.2%
TEINet [35]	96.7%	72.1%
MVFNet [60]	96.6%	75.7%
TDN [56]	97.4%	76.4%
Ours ViT-L	98.1%	81.3%
Ours ViT-L (336↑)	98.2%	81.3 %

Results on UCF101 & HMDB51

Comparison with Few-shot SOTAs

Method	shot	HMDB	UCF	ANet	K400
VideoSwin [36]	2	20.9	53.3	-	-
VideoPrompt [25]	5	56.6	79.5	-	58.5
X-Florence [40]	2	51.6	84.0	-	-
Ours ViT-L	0	53.8	71.9	75.6	61.0
	1	72.7	96.4	89.0	75.8
	2	73.5	96.6	90.3	78.2
	All	80.1	96.9	91.1	84.7

Table 3. Comparisons with SOTAs on few-shot action recognition.

Comparison with Zero-shot SOTAs

Method	UCF* / UCF	HMDB* / HMDB	ANet*/ ANet	Kinetics-600
GA [38]	17.3±1.1/-	19.3±2.1 / -	-	-
TS-GCN [15]	34.2±3.1/-	23.2±3.0 / -	-	7-
E2E [3]	44.1 / 35.3	29.8 / 24.8	26.6 / 20.0	-
DASZL [27]	48.9±5.8 / -	-/-	-	1-
ER [7]	51.8±2.9 / -	35.3±4.6 / -	-	42.1 ± 1.4
ResT [32]	$58.7 \pm 3.3 / 46.7$	41.1±3.7 / 34.4	32.5 / 26.3	-
Ours	85.8±3.3 / 79.6	58.1±5.7 / 49.8	84.6±1.4 / 77.4	68.9±1.0

Table 4. Comparisons with SOTAs on zero-shot video recognition. We directly evaluate our method without any additional training on cross-dataset video recognition. ANet is in short for ActivityNet. * means half classes evaluation.

Some Ablation Studies

	Zero-shot	2-shot	Full-shot
Vision-Only	0.2	43.6	75.27
Vision-Text	54.2	66.4	80.13

Comparisons with vision-only framework

Offline classifier from	Top 1
Random normal matrix	59.3
Random orthogonal matrix	59.4
Linear discriminant projection	80.8
DistilBERT	81.4
Textual encoder of CLIP	81.5

Exploration of different frozen classifiers

Paradigm	Batch Gather	Textual Encoder	Top-1	V100-days
	✓	online	81.2	6.7 (10*)
Contrastive-	✓	offline	80.7	6.6
Based	×	online	77.8	3.5
	×	offline	76.1	3.3
Ours	Х	offline	81.5	3.3

Comparisons with contrastive-based framework

Method	Top-1	FLOPs	Params	Throughput
ViViT-L/16-320 [1]	81.3	3992G	310.8M	4.2 vid/s*
Ours ViT-B/32	78.5	23.7G	71.6M	322.5 vid/s
Ours ViT-B/16	81.5	90.3G	69.9M	126.5 vid/s
Ours ViT-L/14	85.4	415.4G	230.4M	35.5 vid/s

Analysis on inference efficiency

Conclusion

- A simple yet effective transferring method from a frozen classifier perspective
- Improving both the performance and the convergence speed of visual classification
- Superior performance on both general and zeroshot/few-shot recognition
- Codes & models have be available https://github.com/whwu95/Text4Vis

THANKS

Codes & Models

https://github.com/whwu95/Text4Vis

Wenhao Wu

Email: whwu.ucas@gmail.com

Homepage:

https://whwu95.github.io

