

MVFNet: Multi-View Fusion Network for Efficient Video Recognition

Wenhao Wu¹, Dongliang He¹, Tianwei Lin¹, Fu Li¹, Chuang Gan², Errui Ding¹

¹Department of Computer Vision Technology (VIS), Baidu Inc. ²MIT-IBM Watson AI Lab

AAAI 2021

Task

Video Recognition: classify the short clip or untrimmed video into pre-defined class.

Task

Video Recognition: classify the short clip or untrimmed video into pre-defined class.

- More than simply recognizing objects
- Complex person-person interaction & people-object interactions
- Videos bring motions

Key Observations

- Efficient spatial-temporal modeling is the key to action recognition
- Classical C2D :
 temporal modeling unexplored but simple
- 3D CNN, e.g., SlowFast or SlowOnly: effective but expensive
- TSM enables C2D to model temporal relationship at nearly zero cost
 - *fixed* channel-wise 3x1x1 conv
 - kernel of [0,0,1] for forward shift and [1,0,0] for backward shift

Is TSM our ultimate choice?

NO! We CAN have better choice:

- From the **regular viewpoint** of HW-T: TSM can be improved to have arbitrary learnable *"shift"* kernels
- Why not model **relationships from other viewpoints** of WT-H and TH-W?
- With careful designing, better **effectiveness**efficiency trade-off is possible

Key Innovation

Why MVFNet will work

MVFNet is a **generalized** architecture of existing frameworks

- $\alpha = 0$, MVFNet specializes to be C2D
- $\alpha = 1, \beta_H = \beta_W = 0$, MVFNet is a channel-wise 3x1x1 Conv version of SlowOnly/C3D
- $\alpha = 1/4$, $\beta_H = \beta_W = 0$, and half of channel-wise 3x1x1 conv kernels are [0,0,1] and the rest kernels are [1,0,0], then MVFNet becomes TSM

Design choice of α : *MVFBlock is inserted into res_4 and res_5*

Setting	Sth-sth v1				Kinetics-400				
Setting	#F	Top-1	Top-5	FLOPs	#F	Top-1	Top-5	FLOPs	
$\alpha = 0$	8	17.12	43.46	32.88G	4	71.87	90.02	16.44G	
$\alpha = 1/8$	8	49.74	78.09	32.90G	4	74.21	91.34	16.45G	
$\alpha = 1/4$	8	49.24	77.91	32.92G	4	74.18	91.46	16.46G	
$\alpha = 1/2$	8	50.48	79.14	32.96G	4	74.21	91.42	16.48G	
$\alpha = 1$	8	49.73	77.94	33.04G	4	73.75	91.40	16.52G	

(a) Parameter choices of α . Backbone: R-50.

Design choice of how many and where *MVFBlocks are inserted:* $\alpha = 1/2$ and 1/8 for Sth-v1 and K400 , respectively

Stores	Placks	Sth-sth v1, $\alpha = 1/2$			Kinetics-400, <i>α</i> =1/8				
Stages	DIOCKS	#F	Top-1	Top-5	FLOPs	#F	Top-1	Top-5	FLOPs
None	0	8	17.12	43.46	32.88G	4	71.87	90.02	16.44G
$res{5}$	3	8	46.02	75.60	32.90G	4	73.46	91.09	16.44G
res{4,5}	9	8	50.48	79.14	32.96G	4	74.21	91.34	16.45G
res{3,4,5}	13	8	49.72	78.82	33.04G	4	74.08	91.51	16.46G
res{2,3,4,5}	16	8	49.95	77.96	33.12G	4	74.22	91.56	16.47G

(b) The number of MVF Blocks inserted into R-50.

Design choice of fusing multiple viewpoints: $\alpha = 1/2$ and 1/8 for Sth-v1 and K400, respectively; MVFblocks in res_4, res_5

Views	S	th v1	K400		
VIEWS	#F	Top-1	#F	Top-1	
Т	8	49.13	4	73.72	
T-H	8	49.22	4	74.01	
T-W	8	49.31	4	73.88	
T-H-W	8	50.48	4	74.21	
T-H-W (S)	8	47.21	4	73.81	

(c) Study on the different viewsof MVF module. Backbone: R-50. S denotes weight sharing.

Fusing multi-view information is beneficial

Channel-wise 3x1x1 temporal / horizontal / vertical convolution must have independent kernels

Impact of MVFBlocks when different backbones are used: $\alpha = 1/2$ and 1/8 for Sth-v1 and K400, respectively; MVFblocks in res_4, res_5

	#F	Top-1	FLOPs
	4	74.21	16.45G
R-50	8	75.99	32.90G
	16	77.04	65.81G
	4	75.98	31.36G
R-101	8	77.46	62.72G
	16	78.42	125.45G

	Model	Top-1	FLOPs
ML VO	C2D	64.4	1.25G
WID- V 2	MVF	67.5	1.25G
D 50	C2D	71.9	16.44G
K-30	MVF	74.2	16.48G

(e) Advanced backbones for MVFNet on Kinetics-400. (f) **Different backbones for MVFNet on Kinetics-400**. Mb-V2 denotes MobileNet-V2.

Comparison with Similar Variants

 $\alpha = 1/2$ and 1/8 for Sth-v1 and K400, respectively; MVFblocks in res_4, res_5

Method	Sth v1	K400	FI ODe	Params	
Methou	Top-1	Top-1	TLOFS		
C2D	17.1	71.4	32.9G	24.3M	
TSM	47.2	74.1	32.9G	24.3M	
SlowOnly		74.9	41.9G	32.4M	
CoST*	-	-	45.8G	24.3M	
MVFNet	50.5	76.0	32.9G	24.3M	

(d) Study on the effectiveness of **MVFNet**. Backbone: R-50, 8f input. * indicates our implementation.

Comparison with Other Solutions on Kinetics400

	Method	Backbone	Frames × Crops × Clips	GFLOPs	Top-1	Top-5
	I3D (Carreira et al. 2017)	Inception V1	$64 \times N/A \times N/A$	108×N/A	72.1%	90.3%
	S3D-G (Xie et al. 2018)	Inception V1	64×3×10	71.4×30	74.7%	93.4%
	TSN (Wang et al. 2016)	Inception V3	$25 \times 10 \times 1$	80×10	72.5%	90.2%
	$ECO-RGB_{En}$ (Zolfaghari et al. 2018)	BNIncep+Res3D-18	$92 \times 1 \times 1$	267×1	70.0%	-%
	R(2+1)D (Tran et al. 2018)	ResNet-34	$32 \times 1 \times 10$	152×10	74.3%	91.4%
	X3D-M (Feichtenhofer 2020)	-	$16 \times 3 \times 10$	6.2×30	76.0%	92.3%
	STM (Jiang et al. 2019)	ResNet-50	16×3×10	67×30	73.7%	91.6%
	TSM (Lin, Gan, and Han 2019)	ResNet-50	$8 \times 3 \times 10$	33×30	74.1%	91.2%
	SlowOnly (Feichtenhofer et al. 2019)	ResNet-50	$8 \times 3 \times 10$	41.9×30	74.9%	91.5%
	TEINet (Liu et al. 2020)	ResNet-50	8×3×10	33×30	74.9%	91.8%
	TEA (Li et al. 2020b)	ResNet-50	$8 \times 3 \times 10$	33×30	75.0%	91.8%
	Slowfast (Feichtenhofer et al. 2019)	R50+R50	(4+32)×3×10	36.1×30	75.6%	92.1%
	NL+I3D (Wang et al. 2018b)	ResNet-50	$32 \times 3 \times 10$	70.5×30	74.9%	91.6%
	NL+I3D (Wang et al. 2018b)	ResNet-50	$128 \times 3 \times 10$	282×30	76.5%	92.6%
8	MVFNet	ResNet-50	8×3×10	32.9×30	76.0%	92.4 %
	MVFNet	ResNet-50	$16 \times 3 \times 10$	65.8×30	77.0%	92.8%
00-	ip-CSN (Tran et al. 2019)	ResNet-101	32×3×10	82×30	76.7%	92.3%
	SmallBig (Li et al. 2020a)	ResNet-101	$32 \times 3 \times 4$	418×12	77.4%	93.3%
	SlowOnly (Feichtenhofer et al. 2019)	ResNet-101	$16 \times 3 \times 10$	185×30	77.2%	-%
	NL+I3D (Wang et al. 2018b)	ResNet-101	$128 \times 3 \times 10$	359×30	77.7%	93.3%
	Slowfast (Feichtenhofer et al. 2019)	R101+R101	(8+32)×3×10	106×30	77.9%	93.2%
	Slowfast (Feichtenhofer et al. 2019)	R101+R101	(16+64)×3×10	213×30	78.9%	93.5%
	TPN (Yang et al. 2020)	ResNet-101	$32 \times 3 \times 10$	374×30	78.9%	93.9%
	MVFNet	ResNet-101	8×3×10	62.7×30	77.4%	92.9%
	MVFNet	ResNet-101	$16 \times 3 \times 10$	125.4×30	78.4%	93.4%
	$MVFNet_{En}$	R101+R101	$(16+8) \times 3 \times 10$	188.1×30	79.1%	93.8%

Comparison with Other Solutions on Sth-Sth-v1/v2

Method	Backbone	Frames×Crons×Clins	FLOPs	Pre-train	V1 Val	V2 Val
Wiethou	Duckbone	Traines ~ erops ~ enps	TLOIS	TTe-train	Top-1 (%)	Top-1 (%)
I3D (Wang et al. 2018)	3D ResNet50		$153G \times 3 \times 2$	ImageNet	41.6	-
NL I3D (Wang et al. 2018)	3D ResNet50	$32 \times 3 \times 2$	168G×3×2	+	44.4	-
NL I3D+GCN (Wang et al. 2018)	3D ResNet50+GCN		$303G \times 3 \times 2$	K400	46.1	-
ECO (Zolfaghari et al. 2018)	DNIncon 12D Dec19	8×1×1	$32G \times 1 \times 1$	V 400	39.6	-
ECO_{En} (Zolfaghari et al. 2018)	BNIICep+5D Kes18	92×1×1	267G×1×1	K 400	46.4	-
S3D-G (Xie et al. 2018)	Inception	64×1×1	$71G \times 1 \times 1$	K400	48.2	-
TSN (Wang et al. 2016)	ResNet50	$8 \times 3 \times 2$	$33G \times 3 \times 2$	ImageNet	20.5	30.4
TEM (Lin et al. 2010)	DecNet50	8×3×2	$33G \times 3 \times 2$	ImagaNat	47.2	61.2
15M (Lin et al. 2019)	Resinet50	$16 \times 3 \times 2$	$65G \times 3 \times 2$	Imagenet	48.4	63.1
STM (liong at al. 2010)	DecNet50	8×3×10	33G×3×10	ImagaNat	49.2	62.3
STM (Jiang et al. 2019)	Resiletou	$16 \times 3 \times 10$	67G×3×10	Imagenet	50.7	64.3
TEINet (Lin et al. 2020)	DecNet50	8×3×10	$33G \times 3 \times 10$	ImagaNat	48.8	64.0
TEINet (Liu et al. 2020)	Resiletou	$16 \times 3 \times 10$	66G×3×10	ImageNet	51.0	64.7
TEA (Li at al. 2020b)	PosNot50	8×3×10	35G×3×10	ImagaNat	51.7	-
TEA (LI et al. 20200)	Resiletou	$16 \times 3 \times 10$	70G×3×10	Imagenet	52.3	-
		8×1×1	33G×1×1		48.8	60.8
		$8 \times 3 \times 2$	$33G \times 3 \times 2$		50.5	63.5
MVFNet	ResNet50	$16 \times 1 \times 1$	66G×1×1	ImageNet	51.0	62.9
		$16 \times 3 \times 2$	66G×3×2	-	52.6	65.2
		(16+8)×3×2	99G×3×2		54.0	66.3

Transfer Learning on UCF101/HMDB51

Mean class accuracy of RGB modality is reported, RGB models are pretrained on Kinetics400

Method	Backbone	UCF-101	HMDB-51
ECO_{En}	BNIncep+Res3D-18	94.8%	72.4%
ARTNet	ResNet-18	94.3%	70.9%
I3D	Inception V1	95.6%	74.8%
R(2+1)D	Inception V1	96.8%	74.5%
S3D-G	Inception V1	96.8%	75.9%
TSN	BNInception	91.1%	-
StNet	ResNet-50	93.5%	-
TSM	ResNet-50	95.9%	73.5%
STM	ResNet-50	96.2%	72.2%
TEINet	ResNet-50	96.7%	72.1%
MVFNet	ResNet-50	96.6%	75.7%

Conclusion

- Upgrading fixed shift kernels of TSM to be learnable is more flexible
- Relationship modeling from multiple viewpoints is a strong boost
- MVFNet consistently outperforms existing solutions on Kinetics400, Something-Something-v1/v2
- Codes & models will be available

https://github.com/whwu95/MVFNet

Thank you!

MVFNet: Multi-View Fusion Network for Efficient Video Recognition

Contact: Wenhao Wu <u>wuwenhao17@mails.ucas.edu.cn</u> <u>https://github.com/whwu95/MVFNet</u>

