

MOTIVATION

- and [1,0,0] for backward shift

- dynamics.
- of-the-arts.
- that the proposed MVFNet outperforms the state-of-the-art methods with computational cost (GFLOPs) comparable to 2D CNN.

MVFNet: Multi-View Fusion Network for Efficient Video Recognition

Wenhao Wu¹, Dongliang He¹, Tianwei Lin¹, Fu Li¹, Chuang Gan², Errui Ding¹

¹Department of Computer Vision Technology (VIS), Baidu Inc. ²MIT-IBM Watson AI Lab

METHOD Sth-sth v1 #F Top-1 Top-5 FLOPs #F Top-1 T 8 17.12 43.46 32.88G 4 71.87 9 49.74 78.09 32.90G 4 **74.21** 9 Channel-wise Conv 49.24 77.91 32.92G 4 74.18 9 **50.48 79.14** 32.96G 4 74.21 9 Split 8 49.73 77.94 33.04G 4 73.75 9 а (a) **Parameter choices of** α . Backbone: R-50. Sth v1 K400 #F Top-1 #F Top-1 Method 8 49.13 4 73.72 C2D TSM 8 49.22 4 74.01 $1 \times 3 \times 1$ $1 \times 1 \times 3$ $3 \times 1 \times 1$ 8 49.31 4 73.88 SlowOnly $CoST^*$ 8 50.48 4 74.21 **MVFNet** T-H-W (S) 8 47.21 4 73.81 $\beta_T \qquad \beta_H \qquad \beta_W$ c) Study on the different views of MVF module. Backbone: 50. S denotes weight sharing. Concat Method I3D (Wang et al. 2018) 3D Re NL I3D (Wang et al. 2018) MVF Module NL I3D+GCN (Wang et al. 2018) 3D ResNo ECO (Zolfaghari et al. 2018) ECO_{En} (Zolfaghari et al. 2018) BNIncep-**MVFNet** = Learnable Temporal "Shift" + Learnable Horizontal "Shift" + Learnable Vertical "Shift" S3D-G (Xie et al. 2018) TSN (Wang et al. 2016) Viewpoint of TH-W Viewpoint of WT-H TSM (Lin et al. 2019) STM (Jiang et al. 2019) EXPERIMENTS TEINet (Liu et al. 2020) TEA (Li et al. 2020b) GFLOPs Top-1 Top-5 rames×Crops× 90.3% $64 \times N/A \times N/A$ $108 \times N/A$ 72.1% $64 \times 3 \times 10$ 71.4×30 74.7% 93.4% MVFNet 72.5% 90.2% $25 \times 10 \times 1$ 80×10 $92 \times 1 \times 1$ 267×1 70.0% -% $32 \times 1 \times 10$ 74.3% 91.4% 152×10 76.0% 92.3% 16×3×10 6.2×30 16×3×10 67×30 73.7% 91.6% MVF_{8F+16F} $8 \times 3 \times 10$ 74.1% 91.2% 33×30 74.9% 91.5% $8 \times 3 \times 10$ 41.9×30 52 $8 \times 3 \times 10$ 74.9% 91.8% 33×30 MVF_{16F} $8 \times 3 \times 10$ 75.0% 91.8% 33×30 50 MVF_{8F} TSM_{8F+16F} $(4+32) \times 3 \times 10$ 36.1×30 75.6% 92.1% $32 \times 3 \times 10$ 74.9% 91.6% 70.5×30 48 92.6% 282×30 76.5% $128 \times 3 \times 10$ TSM_{16F} **3** 46

Table. Comparison with the state-of-the-art models on Kinetics-400 dataset.

R101+R101

MVFNet_{En}

 $8 \times 3 \times 10$

16×3×10

32×3×10

 $32 \times 3 \times 4$

16×3×10

 $128 \times 3 \times 10$

 $32 \times 3 \times 10$

 $8 \times 3 \times 10$

 $16 \times 3 \times 10$

 $(16+8) \times 3 \times 10$

32.9×30

 65.8×30

 82×30

418×12

 185×30

359×30

 106×30

213×30

 374×30

 62.7×30

 125.4×30

76.0% 92.4%

77.0% **92.8**%

76.7% 92.3%

77.4% 93.3%

77.7% 93.3%

78.9% 93.5%

78.9% 93.9%

78.4% 93.4%

-%

93.2%

92.9%

77.2%

77.9%

77.4%

188.1×30 **79.1**% **93.8**%

 TSM_{8F}

 ECO_{8F}

 ECO_{16}

150

C

44

2 42

40

EXPERIMENTS

cs-400	Stages	Placks	Sth-sth v1, $\alpha = 1/2$			Kinetics-400, α=1/8				
pp-5 FLOPs	Stages	DIOCKS	#F	Top-1	Top-5	FLOPs	#F	Top-1	Top-5	FLOPs
).02 16.44G	None	0	8	17.12	43.46	32.88G	4	71.87	90.02	16.44G
1.34 16.45G	$res{5}$	3	8	46.02	75.60	32.90G	4	73.46	91.09	16.44G
l .46 16.46G	res{4,5}	9	8	50.48	79.14	32.96G	4	74.21	91.34	16.45G
1.42 16.48G	res{3,4,5}	13	8	49.72	78.82	33.04G	4	74.08	91.51	16.46G
1.40 16.52G	res{2,3,4,5}	16	8	49.95	77.96	33.12G	4	74.22	91.56	16.47G

(b) The number of MVF Blocks inserted into R-50.

50.5	76.0	32.9G 24.3M
-	-	45.8G 24.3M
-	74.9	41.9G 32.4M
17.2	74.1	32.9G 24.3M
17.1	71.4	32.9G 24.3M
op-1	Top-1	
th v1	K400	FI OPs Params

	#F Top-1 FLOPs
	4 74.21 16.45G
R-50	8 75.99 32.90G
	16 77.04 65.81G
	4 75.98 31.36G
R-101	8 77.46 62.72G
	16 78.42 125.45G

	Model	Top-1	FLOPs
Mh V2	C2D	64.4	1.25G
WID- V 2	MVF	67.5	1.25G
P 50	C2D	71.9	16.44G
K- 30	MVF	74.2	16.48G

on the effectiveness **MVFNet**. Backbone: R-50, 8f input. indicates our implementation Table. Ablation studies on Something-Something V1 and Kinetics-400.

(e) Advanced backbones for MVFNet on Kinetics-

(f) Different backbones for **MVFNet on Kinetics-400** Mb-V2 denotes MobileNet-V2

Backbone	Frames×Crops×Clips	FLOPs	Pre-train	V1 Val Top-1 (%)	V2 Val Top-1 (%)
3D ResNet50		$153G \times 3 \times 2$	ImageNet	41.6	-
3D ResNet50	$32 \times 3 \times 2$	$168G \times 3 \times 2$	+	44.4	-
ResNet50+GCN		$303G \times 3 \times 2$	K400	46.1	-
	8×1×1	$32G \times 1 \times 1$	V 400	39.6	-
incep+5D Res18	$92 \times 1 \times 1$	$267G \times 1 \times 1$	K 400	46.4	-
Inception	$64 \times 1 \times 1$	$71G \times 1 \times 1$	K400	48.2	-
ResNet50	8×3×2	33G×3×2	ImageNet	20.5	30.4
ResNet50	8×3×2	$33G \times 3 \times 2$	ImageNet	47.2	61.2
	$16 \times 3 \times 2$	$65G \times 3 \times 2$		48.4	63.1
DecNet50	8×3×10	$33G \times 3 \times 10$	ImageNet	49.2	62.3
ResNet50	$16 \times 3 \times 10$	$67G \times 3 \times 10$		50.7	64.3
ResNet50	8×3×10	$33G \times 3 \times 10$	ImagaNat	48.8	64.0
	$16 \times 3 \times 10$	$66G \times 3 \times 10$	imagemet	51.0	64.7
DecNet50	8×3×10	$35G \times 3 \times 10$	ImagaNat	51.7	-
ResNet50	$16 \times 3 \times 10$	$70G \times 3 \times 10$	ImageNet	52.3	-
ResNet50	8×1×1	$33G \times 1 \times 1$		48.8	60.8
	$8 \times 3 \times 2$	$33G \times 3 \times 2$		50.5	63.5
	$16 \times 1 \times 1$	$66G \times 1 \times 1$	ImageNet	51.0	62.9
	$16 \times 3 \times 2$	$66G \times 3 \times 2$	-	52.6	65.2
	(16+8)×3×2	$99G \times 3 \times 2$		54.0	66.3

Table. Comparison with Other Solutions on Sth-Sth-v1/v2.

	Method	Backbone	UCF-101	HMDB-51
	ECO_{En}	BNIncep+Res3D-18	94.8%	72.4%
	ARTNet	ResNet-18	94.3%	70.9%
	I3D	Inception V1	95.6%	74.8%
$ECO_{En}Lite$	R(2+1)D	Inception V1	96.8%	74.5%
	S3D-G	Inception V1	96.8%	75.9%
NL I3D	TSN	BNInception	91.1%	-
	StNet	ResNet-50	93.5%	-
	TSM	ResNet-50	95.9%	73.5%
I3D	STM	ResNet-50	96.2%	72.2%
	TEINet	ResNet-50	96.7%	72.1%
30M 50M 150M	MVFNet	ResNet-50	96.6 %	75.7%
# Parameters				

300 350 400

250

200

FLOPs/Video (G)

Figure. MVF achieves SOTA performance on Sth-Sth V1 and get better accuracy-computation trade-off than I3D, ECO and TSM.

Table. Mean class accuracy on UCF-101 and HMDB-51 achieved by different methods which are transferred from their Kinetics models with RGB modality (over 3 splits).